【導(dǎo)讀】LLC諧振轉(zhuǎn)換器就是一種軟開關(guān)拓?fù)?,允許主功率開關(guān)管零電壓開關(guān),顯著降低開關(guān)損耗,大幅提高電源能效。在這種拓?fù)渲?,為了?shí)現(xiàn)ZVS開關(guān),功率開關(guān)管的寄生體二極管必須反向恢復(fù)時(shí)間非常短。
01 摘要
在當(dāng)前全球能源危機(jī)的形式下,提高電子設(shè)備的能效,取得高性能同時(shí)降低能耗,成為業(yè)內(nèi)新的關(guān)注點(diǎn)。為順應(yīng)這一趨勢,世界上許多電子廠商希望在產(chǎn)品規(guī)格中提高能效標(biāo)準(zhǔn)。在電源管理方面,用傳統(tǒng)的硬開關(guān)轉(zhuǎn)換器是很難達(dá)到新能效標(biāo)準(zhǔn)。因此,電源設(shè)計(jì)者已將開發(fā)方向轉(zhuǎn)向軟開關(guān)拓?fù)洌蕴岣唠娫吹哪苄?,?shí)現(xiàn)更高的工作頻率。
LLC諧振轉(zhuǎn)換器就是一種軟開關(guān)拓?fù)?,允許主功率開關(guān)管零電壓開關(guān),顯著降低開關(guān)損耗,大幅提高電源能效。在這種拓?fù)渲?,為了?shí)現(xiàn)ZVS開關(guān),功率開關(guān)管的寄生體二極管必須反向恢復(fù)時(shí)間非常短。如果體二極管不能恢復(fù)全部載流子,則在負(fù)載從低到高的變化過程中,可能會(huì)發(fā)生硬開關(guān)操作,并可能導(dǎo)致寄生雙極晶體管導(dǎo)通。
02 前言
在電信設(shè)備電源、大型計(jì)算機(jī)/服務(wù)器、電焊機(jī)、鋼材切割機(jī)等消費(fèi)應(yīng)用市場上,對(duì)功率密度的需求每年都在增長。要想提高功率密度,就必須減少元件數(shù)量,降低功率損耗,縮減散熱器和無源器件的尺寸。目前,硬開關(guān)半橋是這些應(yīng)用的典型拓?fù)?,而LLC諧振半橋則是新興的替代方案。LLC拓?fù)浯_保導(dǎo)通前開關(guān)管電壓為零(或者關(guān)斷期間開關(guān)管電流為零),從而消除每次開關(guān)時(shí)因電流和電壓交疊而導(dǎo)致的功率損耗。
在高頻應(yīng)用中采用這種開關(guān)技術(shù)同樣可以降低開關(guān)損耗,從而有助于縮減無源器件的尺寸。顯而易見,開關(guān)功率損耗降低為在應(yīng)用設(shè)計(jì)中選用尺寸更小的散熱器提供了可能。零電壓條件發(fā)生是MOSFET寄生體二極管導(dǎo)通所致。在負(fù)載快速變化過程中,MOSFET從零電壓開關(guān)切換零電流開關(guān),在這種情況下,高dv/dt值可使寄生雙極晶體管導(dǎo)通并燒毀MOSFET。
03 拓?fù)浜喗?/div>
LLC拓?fù)涞幕景霕螂娐肥怯蓛蓚€(gè)開關(guān)管組成,高邊開關(guān)管(Q1)和低邊開關(guān)管(Q2)通過電感Lr和電容Cr與變壓器相連(見圖1)。開關(guān)管與寄生體二極管(D1和D2)和寄生輸出電容(C1和C2)并聯(lián),為了闡明它們在全局功能中的作用,我們在圖中把它們單獨(dú)標(biāo)注出來。
在圖1中,我們注意到多出一個(gè)Lr電感,實(shí)際上,Lr是變壓器漏電感,其規(guī)則在LLC拓?fù)渲蟹浅V匾?/div>


圖1:LLC半橋電路
如果變壓器原邊電感Lm值很大,不會(huì)影響諧振網(wǎng)絡(luò),則上圖所示的轉(zhuǎn)換器就是一個(gè)串聯(lián)諧振轉(zhuǎn)換器。

圖2
在一個(gè)諧振單元中,當(dāng)輸入信號(hào)頻率(fi)等于諧振頻率(fr)時(shí) - 即當(dāng)LC阻抗為零時(shí),增益最大。諧振轉(zhuǎn)換器工作頻率范圍是由兩個(gè)特定的諧振頻率值界定,這些頻率值與電路有關(guān)。驅(qū)動(dòng)控制器設(shè)定MOSFET的開關(guān)頻率(fs)等于電路諧振頻率,以保證諧振的重要優(yōu)勢。
現(xiàn)在我們將看到,如何通過改變負(fù)載,使諧振頻率從最小值(fr2)變?yōu)樽畲笾?fr1):

如果使用圖形表示諧振單元的增益,我們就得到圖3所示的曲線,不難看出,圖形變化與Q值相關(guān)。

圖3
LLC諧振轉(zhuǎn)換器的工作范圍受限于峰值增益。值得注意的是,峰值電壓增益既不發(fā)生在fr1處 ,也不出現(xiàn)在 fr2處。峰值增益對(duì)應(yīng)的峰值增益頻率是fr2與fr1之間的最大頻率。隨著Q值減小(隨著負(fù)載減?。?,峰值增益頻率移向fr2,并且獲得更高的峰值增益。隨著Q值增加(負(fù)載增加),峰值增益頻率移向fr1,峰值增益下降。因此,滿載應(yīng)該是諧振網(wǎng)絡(luò)設(shè)計(jì)的最差工作條件。
從MOSFET角度看,如前所述,MOSFET的軟開關(guān)是包括LLC在內(nèi)的諧振轉(zhuǎn)換器的重要優(yōu)點(diǎn),而對(duì)于整個(gè)系統(tǒng),由于輸出電流是正弦波,因此, EMI干擾降低。圖4所示是LLC轉(zhuǎn)換器的典型波形特性。

圖4:LLC轉(zhuǎn)換器的典型波形
在圖4中我們注意到,漏極電流Ids1在變正前是在負(fù)電流區(qū)擺動(dòng)。負(fù)電流值表示體二極管導(dǎo)通。在此階段,由于二極管上的壓降,MOSFET漏源兩極的電壓非常小。如果MOSFET在體二極管導(dǎo)通期間開關(guān),則發(fā)生ZVS開關(guān),開關(guān)損耗降低。該特性可以縮減散熱器尺寸,提高系統(tǒng)能效。
如果MOSFET開關(guān)頻率fs小于fr1,功率器件上的電流的形狀會(huì)改變。事實(shí)上,如果持續(xù)時(shí)間足以在輸出二極管上產(chǎn)生不連續(xù)的電流,則原邊電流形狀會(huì)偏離正弦波形。

圖5:fs <fr1時(shí)的LLC轉(zhuǎn)換器的典型波形
此外,如果MOSFET的寄生輸出電容C1和C2與Cr的容值相當(dāng),則諧振頻率fr也會(huì)受到器件的影響。正是由于這個(gè)原因,在設(shè)計(jì)過程中,選擇Cr值大于C1和C2,可以解決這個(gè)問題,使fr值不受所用器件的影響。
04 續(xù)流和ZVS條件
分析一下諧振頻率的方程式就會(huì)發(fā)現(xiàn),在高于峰值增益頻率時(shí),諧振網(wǎng)絡(luò)的輸入阻抗是感抗,諧振網(wǎng)絡(luò)的輸入電流(Ip)滯后于諧振網(wǎng)絡(luò)的輸入電壓(Vd)。在低于峰值增益頻率時(shí),諧振網(wǎng)絡(luò)的輸入阻抗變?yōu)槿菘梗⑶襂p領(lǐng)先Vd。在電容區(qū)工作時(shí),體二極管在MOSFET開關(guān)期間執(zhí)行反向恢復(fù)操作。
當(dāng)系統(tǒng)在電容區(qū)工作時(shí),MOSFET會(huì)面臨極大的潛在失效風(fēng)險(xiǎn)。事實(shí)上,如圖6中的綠色圓圈所示,寄生體二極管的反向恢復(fù)時(shí)間變得非常重要。

圖6
根據(jù)這一點(diǎn),在負(fù)載由低變高的過程中(圖7),驅(qū)動(dòng)電路應(yīng)強(qiáng)制MOSFET進(jìn)入ZVS和正關(guān)斷電流區(qū)。如果無法保證,MOSFET的工作區(qū)可能很危險(xiǎn)。

圖7
在低負(fù)載穩(wěn)態(tài)條件下,系統(tǒng)工作在頻率較低的諧振頻率fr2附近,然后ZVS導(dǎo)通,并保證正關(guān)斷漏極電流。在負(fù)載變化(從低到高)后,開關(guān)頻率應(yīng)該變成新的諧振頻率。如果沒有發(fā)生這種情況(如圖8中綠線所示),則系統(tǒng)狀態(tài)經(jīng)過區(qū)域3(ZCS區(qū)域)和ZVS導(dǎo)通,正關(guān)斷漏極電流不會(huì)出現(xiàn)。因此,當(dāng)MOSFET關(guān)斷時(shí),電流也會(huì)流過寄生體二極管。
在增益圖上分析一下負(fù)載從低變高的過程,我們不難發(fā)現(xiàn):

圖8
黑虛線代表負(fù)載變化期間的理想路徑,而綠虛線表示實(shí)際路徑。在負(fù)載從低變高的過程中,可以看到系統(tǒng)經(jīng)過ZCS區(qū)域,因此,寄生體二極管的性能變得非常重要。出于這個(gè)原因,新LLC設(shè)計(jì)的趨勢是使用體二極管恢復(fù)時(shí)間非常短的功率器件。
特別推薦
- 安森美與舍弗勒強(qiáng)強(qiáng)聯(lián)手,EliteSiC技術(shù)驅(qū)動(dòng)新一代PHEV平臺(tái)
- 安森美與英偉達(dá)強(qiáng)強(qiáng)聯(lián)手,800V直流方案賦能AI數(shù)據(jù)中心能效升級(jí)
- 貿(mào)澤電子自動(dòng)化資源中心上線:工程師必備技術(shù)寶庫
- 隔離變壓器全球競爭圖譜:從安全隔離到能源革命的智能屏障
- 芯??萍急R國建:用“芯片+AI+數(shù)據(jù)”重新定義健康管理
技術(shù)文章更多>>
- 村田中國亮相2025開放計(jì)算創(chuàng)新技術(shù)大會(huì):以創(chuàng)新技術(shù)驅(qū)動(dòng)智能化發(fā)展
- DigiKey獲Sensirion“2025卓越分銷獎(jiǎng)”,全球服務(wù)標(biāo)桿再獲認(rèn)可
- 智造新勢力!WAIE2025深圳圓滿收官,明年再聚
- 即訂即發(fā)!DigiKey 2025 Q2 新增 32,000 種電子元器件
- 安森美公布2025年第二季度財(cái)報(bào)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
拆解
場效應(yīng)管
超霸科技
超級(jí)本
超級(jí)電容
車道校正
車身控制
車載以太網(wǎng)
車載娛樂
充電
充電電池
充電器
充電樁
觸控屏
觸控顯示
觸摸開關(guān)
傳感技術(shù)
傳感器
傳感器模塊
船型開關(guān)
串聯(lián)電阻公式
創(chuàng)智成
磁傳感器
磁環(huán)電感
磁敏三極管
磁性存儲(chǔ)器
磁性元件
磁珠電感
存儲(chǔ)器
大功率管