【導(dǎo)讀】為了優(yōu)化電動(dòng)汽車(chē)(EV)的功率,車(chē)載充電器(OBC)必須高效,重量輕且尺寸小。OBC需要支持適當(dāng)?shù)牟⒕W(wǎng)(G2V)電壓和電流電池充電算法;因此,它用作電網(wǎng)和EV之間的功率調(diào)節(jié)接口(圖1)。此外,它必須能夠從車(chē)輛到電網(wǎng)(V2G)供電,以便電動(dòng)汽車(chē)可以為電網(wǎng)進(jìn)行反向充電。
為了優(yōu)化電動(dòng)汽車(chē)(EV)的功率,車(chē)載充電器(OBC)必須高效,重量輕且尺寸小。OBC需要支持適當(dāng)?shù)牟⒕W(wǎng)(G2V)電壓和電流電池充電算法;因此,它用作電網(wǎng)和EV之間的功率調(diào)節(jié)接口(圖1)。此外,它必須能夠從車(chē)輛到電網(wǎng)(V2G)供電,以便電動(dòng)汽車(chē)可以為電網(wǎng)進(jìn)行反向充電。

圖1 OBC需要支持適當(dāng)?shù)碾娋W(wǎng)到車(chē)輛(G2V)電壓,并可實(shí)現(xiàn)車(chē)輛到電網(wǎng)(V2G)提供電源。
要使EV內(nèi)部的電網(wǎng)與高壓電池之間的接口便利化,需要電磁干擾(EMI)濾波器,功率因數(shù)校正(PFC)和隔離的DC / DC功率級(jí)。圖2說(shuō)明了這種體系結(jié)構(gòu)。

圖2此簡(jiǎn)化原理圖顯示了OBC如何用作電網(wǎng)和電池之間的接口。
討論的范圍僅限于DC / DC階段。在撰寫(xiě)本文時(shí),DC / DC級(jí)的兩個(gè)流行選擇是電容器-電感器-電感器-電感器-電容器(CLLLC)和雙有源電橋(DAB)拓?fù)洌▓D3和圖4)。兩種選擇都可以實(shí)現(xiàn)較小的解決方案尺寸,并提供必要的G2V和V2G電源需求。

圖3該原理圖顯示了CLLLC的基本拓?fù)洹?/div>

圖4該原理圖顯示了DAB拓?fù)洹?/div>
最大化OBC性能并最小化其尺寸
要了解這兩個(gè)拓?fù)溥x項(xiàng)如何影響OBC的大小和性能,讓我們進(jìn)一步將范圍限制在電池充電階段(即G2V),考慮如何通過(guò)提供開(kāi)關(guān)的最大電池功率來(lái)最大程度地減少充電時(shí)間可以忍受。例如,請(qǐng)考慮以下操作條件下的開(kāi)關(guān):
PDISS = 20W
ϑJA = 3°C / W
TA = 65°攝氏度
根據(jù)等式1,開(kāi)關(guān)的TJ = 125°C:
TJ = PDISS⋅ϑJA + TA(1)
此設(shè)計(jì)中的開(kāi)關(guān)不能承受超過(guò)125°C的溫度。因此,這種情況代表了OBC在不影響開(kāi)關(guān)的情況下可以提供給電池的最高功率水平。目的是最大程度地減少開(kāi)關(guān)中的功耗并盡快給電池充電。
驅(qū)動(dòng)開(kāi)關(guān)功率損耗的主要因素有兩個(gè):均方根(RMS)電流和開(kāi)關(guān)保持零電壓開(kāi)關(guān)(ZVS)的能力。
德州儀器(TI)的GaN開(kāi)關(guān)具有低電容,快速導(dǎo)通和關(guān)斷的特性,因此該轉(zhuǎn)換器能夠以比硅更高的開(kāi)關(guān)頻率工作。更高頻率的操作直接影響電抗組件的尺寸,并導(dǎo)致變壓器,電感器和電容器更小。首先,為DAB和CLLLC建立基線(xiàn)設(shè)計(jì),然后探索電路增強(qiáng)功能,以擴(kuò)展轉(zhuǎn)換器的ZVS范圍。
基準(zhǔn)DAB和CLLLC性能比較

表1概述了OBC的基本要求。
為DAB和CLLLC創(chuàng)建詳細(xì)的設(shè)計(jì)有助于確定最可行的設(shè)計(jì)。這樣做的過(guò)程超出了本討論的范圍。但是,電路仿真最適合于充分估算開(kāi)關(guān)中的損耗并驗(yàn)證是否符合整體功能。將模擬器配置為在不同的功率水平以及輸入和輸出電壓下以批處理模式運(yùn)行,并測(cè)試了不同的DAB和CLLLC電感器,電容器以及匝數(shù)比值。在每次模擬運(yùn)行中,收集有關(guān)VIN,VOUT,開(kāi)關(guān)功率,RMS電流和開(kāi)關(guān)ZVS條件等參數(shù)的數(shù)據(jù)。表2總結(jié)了兩種優(yōu)化的拓?fù)湓O(shè)計(jì)。

DAB和CLLLC設(shè)計(jì)元素表
圖5說(shuō)明了顯著的仿真結(jié)果。雖然每個(gè)拓?fù)渲杏邪藗€(gè)開(kāi)關(guān),但這些圖僅繪制了功率損耗最高的開(kāi)關(guān)。對(duì)于每個(gè)開(kāi)關(guān),都有三個(gè)圖。首先是總損耗。第二個(gè)是通過(guò)該開(kāi)關(guān)的RMS電流。最右邊的第三張圖顯示了給定的GaN開(kāi)關(guān)導(dǎo)通時(shí)最壞情況的漏極-源極電壓。該電壓越高,該開(kāi)關(guān)的損耗就越大。因此,開(kāi)關(guān)的RMS電流及其保持ZVS的能力代表了設(shè)備功耗的最大部分。

圖5 仿真結(jié)果顯示RMS和ZVS基準(zhǔn)CLLLC和DAB的條件。
有了這些事實(shí)并仔細(xì)檢查了數(shù)據(jù),很明顯CLLLC能夠在更廣泛的操作范圍內(nèi)維持ZVS。因此,增強(qiáng)型ZVS可以降低CLLLC開(kāi)關(guān)的功耗。話(huà)雖如此,DAB在6.6 kW的工作功率下具有出色的性能,這歸功于良好的ZVS和在大多數(shù)范圍內(nèi)減小的RMS電流。這些觀察結(jié)果表明,正在尋找一種在不對(duì)RMS電流產(chǎn)生不利影響的情況下改善ZVS的方法。
用換向電感器改善ZVS
圖6和圖7顯示了與圖3和圖4相同的CLLLC和DAB電路,并在拓?fù)渲刑砑恿祟~外的電感器(以黃色突出顯示),以提供在較寬的工作范圍內(nèi)維持ZVS所需的額外電流。現(xiàn)在,考慮一種情況,這些額外的電感器一直都在工作。

圖6 示意圖顯示了帶有換向電感的CLLLC。

圖7 示意圖顯示了帶有換向電感的DAB。

表3列出了新電感的值,并為方便起見(jiàn)重復(fù)了其他參數(shù)。
表3具有換向電感器(LC)值的DAB和CLLLC設(shè)計(jì)
圖8顯示了重復(fù)圖5中的仿真后的結(jié)果。

圖8 每個(gè)電路的RMS和ZVS結(jié)果顯示了LC的影響。
在這種情況下,請(qǐng)注意,DAB能夠在整個(gè)工作條件范圍內(nèi)實(shí)現(xiàn)完整的ZVS。 GaN開(kāi)關(guān)的VDS在接通時(shí)始終為0V的事實(shí)清楚地說(shuō)明了這一點(diǎn)。 CLLLC雖然未實(shí)現(xiàn)完整的ZVS,但能夠?qū)崿F(xiàn)顯著改進(jìn)的ZVS。但是,還請(qǐng)注意,ZVS的改進(jìn)以?xún)煞N拓?fù)浣Y(jié)構(gòu)的RMS電流為代價(jià)。僅從功率損耗來(lái)看,似乎DAB轉(zhuǎn)換器在大多數(shù)范圍內(nèi)都具有優(yōu)勢(shì)。
請(qǐng)先將圖8與圖5進(jìn)行比較,您會(huì)注意到,在某些條件下,換向電感器實(shí)際上會(huì)使損耗更糟。這就引出了一個(gè)問(wèn)題——是否有可能創(chuàng)建一種混合方法,使您能夠同時(shí)實(shí)現(xiàn)圖5和圖8所示的最低損失?
最大程度地減少損失
換向電感器保持ZVS的更大范圍的工作條件。當(dāng)轉(zhuǎn)換器無(wú)法維持ZVS時(shí),這將帶來(lái)巨大的好處。換向電感器的問(wèn)題在于,只有在否則會(huì)丟失ZVS的情況下,它才能改善損耗。如果轉(zhuǎn)換器已經(jīng)在ZVS中,則換向電感器會(huì)增加電流,這會(huì)導(dǎo)致開(kāi)關(guān)中的更多損耗。
這種思考過(guò)程導(dǎo)致了對(duì)混合方法的探索,在這種方法中,換向電感器在較重的負(fù)載下保持關(guān)閉狀態(tài),而在較輕的負(fù)載下接通。圖9顯示了使用這種方法重復(fù)進(jìn)行仿真之后的結(jié)果,這使設(shè)計(jì)能夠利用每種拓?fù)湓谥剌d下的較低RMS電流和自然ZVS能力。
我小心地僅增加了足夠的換向電感和工作時(shí)間,以適合開(kāi)關(guān)的熱范圍,以防止不必要的RMS電流流到開(kāi)關(guān)或不必要的解決方案尺寸。請(qǐng)注意,DAB轉(zhuǎn)換器在工作范圍內(nèi)無(wú)法實(shí)現(xiàn)完整的ZVS。 ZVS條件已大大改善,但只需要保持在前面討論的20 W開(kāi)關(guān)目標(biāo)之內(nèi)即可。

圖9 使用混合方法的RMS和ZVS結(jié)果。
為了更好地可視化,圖10總結(jié)了每種情況下的功率損耗。您可以看到,DAB轉(zhuǎn)換器在開(kāi)關(guān)的功率損耗方面具有明顯的優(yōu)勢(shì)。

圖10每種情況下的功率損耗摘要有助于直觀地權(quán)衡取舍。
為了更好地說(shuō)明這兩個(gè)轉(zhuǎn)換器之間的性能,圖11重新格式化并繪制了圖10所示的數(shù)據(jù)。該圖顯示了每個(gè)轉(zhuǎn)換器可以提供的最大功率,假設(shè)開(kāi)關(guān)不能安全地耗散超過(guò)20 W的功率。請(qǐng)記住,20 W是開(kāi)關(guān)可以承受的最大損耗,并且仍將結(jié)溫保持在125°C以下。

圖11該圖顯示了每個(gè)轉(zhuǎn)換器可以提供的最大功率。
CLLLC或DAB更好嗎?
如圖11中的藍(lán)線(xiàn)高于紅色的事實(shí)所證明,與CLLLC相比,DAB轉(zhuǎn)換器可在整個(gè)范圍內(nèi)提供更多的功率。這使人們很容易假設(shè)DAB是明顯的贏家。但是,請(qǐng)記住最小的尺寸和重量這是OBC的核心要求。 DAB轉(zhuǎn)換器需要兩個(gè)額外的電感器,而CLLLC僅需要一個(gè)。 我認(rèn)為,這使CLLLC獲勝。
像工程學(xué)中的大多數(shù)事物一樣,最好的選擇幾乎總是要權(quán)衡需求。 巨大的優(yōu)勢(shì)是免費(fèi)提供的,這種情況很少見(jiàn),在這種情況下也是如此。 對(duì)我而言,CLLLC似乎好于DAB,因?yàn)樗坪蹙哂忻黠@的尺寸優(yōu)勢(shì)。
(來(lái)源:TI,作者:Brent McDonald是TI系統(tǒng)和應(yīng)用經(jīng)理)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話(huà)或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 電磁干擾下的生存指南:電流與電壓的底層技術(shù)博弈
- 2025機(jī)器人+應(yīng)用與產(chǎn)業(yè)鏈新一輪加速發(fā)展藍(lán)皮書(shū)》電子版限免下載!
- 從績(jī)效亮點(diǎn)到新目標(biāo)規(guī)劃,意法半導(dǎo)體可持續(xù)發(fā)展再進(jìn)階
- 碳膜電阻技術(shù)全解析:從原理到產(chǎn)業(yè)應(yīng)用
- 七連冠!貿(mào)澤電子蟬聯(lián)Molex亞太區(qū)年度電子目錄代理商大獎(jiǎng)
- 電位器技術(shù)全解析:從基礎(chǔ)原理到產(chǎn)業(yè)應(yīng)用
- 精密電阻技術(shù)解析與產(chǎn)業(yè)應(yīng)用指南
技術(shù)文章更多>>
- 線(xiàn)繞電位器技術(shù)解析:原理、應(yīng)用與選型策略
- 低電流調(diào)光困局破解:雙向可控硅技術(shù)如何重塑LED兼容性標(biāo)準(zhǔn)
- 從實(shí)驗(yàn)室到市場(chǎng):碳化硅功率器件如何突破可靠性瓶頸
- 維科杯·OFweek2025年度評(píng)選:揭秘工業(yè)自動(dòng)化及數(shù)字化轉(zhuǎn)型“領(lǐng)航者”,誰(shuí)將脫穎而出?
- 尋找傳感器界的“隱形王者”!維科杯·OFweek 2025年度評(píng)選等你來(lái)戰(zhàn)
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
國(guó)防航空
過(guò)流保護(hù)器
過(guò)熱保護(hù)
過(guò)壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器
紅外收發(fā)器
紅外線(xiàn)加熱
厚膜電阻
互連技術(shù)
滑動(dòng)分壓器
滑動(dòng)開(kāi)關(guān)
輝曄
混合保護(hù)器
混合動(dòng)力汽車(chē)
混頻器
霍爾傳感器
機(jī)電元件
基創(chuàng)卓越
激光二極管
激光器
計(jì)步器
繼電器
繼電器接線(xiàn)
減速電機(jī)
檢波二極管
檢波器